Name:
Period: \qquad

1) What is the pH of a solution that contains 25.0 grams of hydrochloric acid (HCl) dissolved in 1.50 solution?
2) What is the pH of a solution that contains 1.32 grams of nitric acid $\left(\mathrm{HNO}_{3}\right)$ dissolved in 750 mL solution?
3) What is the pH of a solution that contains 1.2 moles of nitric acid $\left(\mathrm{HNO}_{3}\right)$ and 1.7 moles of hydrochloric acid (HCl) dissolved in 1000 . liters of solution?
4) If a solution has a $\left[\mathrm{H}^{+}\right]$concentration of $4.5 \times 10^{-7} \mathrm{M}$, is this an acidic or basic solution? Explain.
5) An acidic solution has a pH of 4.00 . If I dilute 10.0 mL of this solution to a final volume of 1000 . mL , what is the pH of the resulting solution?
For Problems 6-9 calculate the pH
6) $\mathrm{A} 4.50 \times 10^{-3} \mathrm{M} \mathrm{HBr}$ solution.
7) A $3.67 \times 10^{-5} \mathrm{M}$ KOH solution.
8) A solution made by diluting 25 mL of 6.0 M HCl until the final volume of the solution is 1.75 L .
9) 5.00 L of an aqueous solution that contains 1.00 grams of HBr and 1.00 grams of HNO_{3}.
10) What are the pOHs for the solutions in problems 6 through 9 ?
11) What is the pH of a 0.800 M aqueous solution of $\mathrm{Ba}(\mathrm{OH})_{2}$

pH Practice Worksheet

Name: \qquad Period: \qquad

1) What is the pH of a solution that contains 25.0 grams of hydrochloric acid (HCl) dissolved in 1.50 solution?
2) What is the pH of a solution that contains 1.32 grams of nitric acid $\left(\mathrm{HNO}_{3}\right)$ dissolved in 750 mL solution?
3) What is the pH of a solution that contains 1.2 moles of nitric acid $\left(\mathrm{HNO}_{3}\right)$ and 1.7 moles of hydrochloric acid (HCl) dissolved in 1000 . liters of solution?
4) If a solution has a $\left[\mathrm{H}^{+}\right]$concentration of $4.5 \times 10^{-7} \mathrm{M}$, is this an acidic or basic solution? Explain.
5) An acidic solution has a pH of 4.00 . If I dilute 10.0 mL of this solution to a final volume of 1000 . mL , what is the pH of the resulting solution?
For Problems 6-9 calculate the pH
6) $\mathrm{A} 4.50 \times 10^{-3} \mathrm{M} \mathrm{HBr}$ solution.
7) A $3.67 \times 10^{-5} \mathrm{M} \mathrm{KOH}$ solution.
8) A solution made by diluting 25 mL of 6.0 M HCl until the final volume of the solution is 1.75 L .
9) 5.00 L of an aqueous solution that contains 1.00 grams of HBr and 1.00 grams of HNO_{3}.
10) What are the pOHs for the solutions in problems 6 through 9 ?
11) What is the pH of a 0.800 M aqueous solution of $\mathrm{Ba}(\mathrm{OH})_{2}$
1. $p H=-\log \left(\frac{25.0 g x \frac{1 \mathrm{~mole}}{36.46 \mathrm{~g}}}{1.50 L}\right)=0.340$
2. $p H=-\log \left(\frac{1.32 g x \frac{1 \text { mole }}{63.01 g}}{.750 L}\right)=1.554$
3. $\mathrm{pH}=-\log \left(\frac{1.2 \text { moles } \mathrm{HNO}_{3}+1.7 \text { moles } \mathrm{HCL}}{1000 \mathrm{~L}}\right)=2.54$
4. $\mathrm{pH}=-\log 4.50 \times 10^{-7}=6.347$ acid
5. $\mathrm{pH}=-\log \left(\frac{1.0 \times 10^{-4} \mathrm{M} \times 10.0 \mathrm{ml}}{1000 . \mathrm{ml}}\right)=6.00$
6. $\mathrm{pH}=-\log 4.50 \times 10^{-3}=2.347$
7. $p H=14-\left(-\log \left[O H^{-}\right]\right)=14-\left(-\log \left[3.67 \times 10^{-5} \mathrm{M}\right]\right)=9.565$
8. $\mathrm{pH}=-\log \left(\frac{6.0 \mathrm{M} \times 25 \mathrm{mLx} \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}}{1.75 \mathrm{~L}}\right)=1.067$
9. $\mathrm{pH}=-\log \left(\frac{\frac{1.00 \mathrm{~g} \mathrm{HBr}}{80.91 \mathrm{~g} / \mathrm{mole}}+\frac{1.00 \mathrm{~g} \mathrm{HNO}_{3}}{63.01 \mathrm{~g} / \mathrm{mole}^{2}}}{5.00 \mathrm{~L}}\right)=2.248$
10. $\mathrm{pOH}=11.653$
$\mathrm{pOH}=12.93$
$\mathrm{pOH}=4.435$
$\mathrm{pOH}=11.752$
11. $\mathrm{pH}=-\log \left(\frac{10^{-14}}{\left[\mathrm{OH}^{-}\right]}\right)=-\log \left(\frac{10^{-14}}{2 \times 0.800 \mathrm{M})}\right)=14.204$ Remember you get two OH^{-}ions for each $\mathrm{Ba}(\mathrm{OH})_{2}$.
